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By use of 2-deuterated benzothiazoline as a deuterium donor in combination with a chiral phosphoric acid, the transfer deuteration of ketimine and
a-iminoester took place smoothly to give o-deuterated amines in high yields with excellent enantioselectivities. The remarkable kinetic isotope
effect suggests that carbon—deuterium bond cleavage is the rate-determining step.

Deuterated compounds are an important class of mate-
rials that are used in various areas, including the analysis of
the metabolic pathways of bioactive compounds,'®® the
determination of the mechanisms of both chemical and
enzymatic reactions,'“® and NMR solvents.

Recently, ‘heavy drugs’ have emerged as novel drugs
that exhibit better stability and/or bioavailability than
their hydrogen analogs.> For instance, the deuterium
substitution on the methylenedioxy moiety of deuterated
paroxetine,’ an antidepressant, altered the drug’s metabo-
lism and prolonged its activity in vivo. Telaprevir is gen-
erally acknowledged as an inhibitor of the hepatitis C
virus; however, the chiral center next to a-ketoamide
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(S-configuration) in telaprevir tends to epimerize to furnish
an (R)-diastereoisomer that has ~30-fold lower activity.
Through the deuteration of telaprevir, the epimerization of
telaprevir-d; is retarded due to the presence of deuterium
(Figure 1).* In both cases, the introduction of deuterium
improved the bioavailability.

The significance of deuteration has been growing at
a rapid pace. A number of practical methods for the
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Figure 1. Deuterated pharmaceuticals.

deuteration, such as catalytic deuteration, conventional
deuteride reduction, and a H—D exchange reaction, have
been reported.” Although Yamada and co-workers re-
ported the enantioselective reduction of aldimine with
NaBD,,® asymmetric deuteration is underexplored. We
focused on the deuteride reduction of imine®’ as a versatile
reaction for the preparation of chiral a-deuterated amine.®

The enantioselective transfer hydrogenation of keti-
mines by the combined use of Hantzsch ester and chiral
phosphoric acid has emerged as a useful method for
the preparation of chiral amines.” On the other hand, we
demonstrated that benzothiazoline'® functioned as a novel
hydrogen donor for the asymmetric transfer hydrogena-
tion of ketimines'' by means of chiral phosphoric acid.'*!?
The advantages of benzothiazoline are twofold: (1)
benzothiazoline can be easily synthesized by mixing 2-
aminothiophenol and aldehyde; and (2) the ease of tuning
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the reactivity and enantioselectivity by changing the sub-
stituent at the 2-position of benzothiazoline (Figure 2).'*
We hypothesized that the use of deuterated benzothiazoline,
which is readily accessible from D;-aldehyde, would enable ef-
ficient access to optically active deuterated amines (Scheme 1).
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Figure 2. Benzothiazoline.

Scheme 1. Synthesis of Chiral Deuterated Amine
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At the outset, we tried to perform the deuteride reduc-
tion of ketimine.''® On treatment of ketimine 2a with
2-deuterio-2-(2-naphthyl)benzothiazoline (3a) in the pre-
sence of a catalytic amount of chiral phosphoric acid 1 in
mesitylene at 50 °C, the transfer deuteration proceeded to
give corresponding a-deuterated amine 4a with excellent
enantioselectivity. Deuterium was incorporated at the
a-position of nitrogen (Scheme 2).

Scheme 2. Transfer Deuteration of Ketimine by Use of
D-Benzothiazoline
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The kinetic isotope effect (ky/kp = 3.8) was observed in
the competitive reaction between H- and D-benzothiazo-
lines, which clearly implies that cleavage of the C—H bond
is the rate-limiting step (Scheme 3).

Scheme 3. Competition Experiment between H- and D-Ben-

zothiazolines
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We propose the reaction mechanism shown in Figure 3.
Phosphoric acid activates ketimine as a Brensted acid, and
phosphoryl oxygen forms a hydrogen bond with N—H of
benzothiazoline. Then, the D-atom attacks ketimine as a
deuteride.

acidic activation
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Figure 3. Proposed reaction mechanism.

An acetal exchange between ketimine and D-benzothi-
azoline and a subsequent deuteride reduction proceeded to
give 5 as the byproduct. We investigated this deuteride
reduction in an effort to improve the yield of a-deuterated
amine 4a by suppressing the exchange reaction (Table 1).
Although the addition of a dehydrating reagent and the
increase in temperature were not effective in improving
the yields (entries 2 and 3), the addition of MS 5 A had a
beneficial effect, furnishing 4a quantitatively (entry 4).

With the optimized reaction conditions in hand, we
investigated the substrate scope of the reaction (Table 2).
We could obtain optically active a-deuterated amines in
high yields and with excellent enantioselectivities in all the
cases examined.

The deuteride reduction was successfully applied to
o-iminoesters (Table 3). 2-Deuterio-2-phenylbenzothiazo-
line proved to be the most effective hydrogen donor to give
corresponding o-amino o-aryl acetates with excellent
enantioselectivities.
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Table 1. Optimization of Conditions for Asymmetric Deutera-
tion of Ketimine by Use of D-Benzothiazoline

@E“ <

2-naphthyl
.PMP g g H PMP
|

N S 3a (14equiv) p N-pMP HN’
/J\ 9 2 < y )V
Ph 1 (2 mol /o). 50 °C Ph 2-naph D

mesitylene, 0.1 M D
2a 4a 5
yield of ee of yield of
entry time/h 4a/%° 4a/%° 5/%"
1 32 45 98 21
2¢ 28 50 97 15
34 42 44 97 22
4¢ 26 quant 98 0

“Tsolated yield. ® Determined by HPLC analysis on a chiral station-
ary phase using Daicel Chiralcel OD-H column. ‘MgSO,4 was added.
4At 70 °C.°MS 5 A was added.

Table 2. Asymmetric Deuteration of Ketimines 2 by Use of
D-Benzothiazoline 3a

1 (2 mol %) H

_PMP H
N N D MS 5 A D N-PMP
| & g
AF)\ * @3%2 naph )\

mesitylene A"

2 3a (1.4 equiv) W00 4
entry Ar time/h yield/%® ee/%"
1 Ph 26 quant 98
2 2-naphthyl 24 90 98
3 p-tolyl 24 93 98
4 p-MeOCgH,4 24 91 97
5 p-FCeH, 20 71 98
6 p-CIC¢Hy 26 97 97
7° p-NOQCGH4 25 77 95
8 m-NOZCGH4 20 84 97

“Isolated yield. ® Determined by HPLC analysis on a chiral station-
ary phase using Daicel Chiralcel OD-H column and Daicel Chiralpak
AD-H column. “MS 13 X was employed instead of MS 5 A.

Enantiomerically pure deuterated amine 4b could be
obtained by a single recrystallization from hexane. The
p-methoxyphenyl group of 4b was oxidatively cleaved by
trichloroisocyanuric acid (TCCA),"” and the adduct was
isolated as N-Boc amine 8 in good yield and in optically
pure form (Scheme 4).

The absolute configuration of deuterated o-aminoester
7a was determined to be (S) by X-ray crystallographic
analysis of 4-bromobenzoate 9 (Scheme 5).

As an application of the present methodology, deuter-
ated oxazolidinone 11 was prepared starting from 7a by

(15) Verkade,J. M. M.; van Hemert, L. J. C.; Quaedflieg, P.J. L. M.;
Alsters, P. L.; van Delft, F. L.; Rutjes, F. P. J. T. Tetrahedron Lett. 2006,
47,8109-8113.
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Table 3. Asymmetric Deuteration of Iminoesters 6 by Use of
D-Benzothiazoline 3b

.PMP H 1 (2 mol % H

)NI\ C[N D (MSSA ) D N-PMP
+ Ph L

Ar” TCO,Me 5>L mesitylene AT~ CO;Me

6 3b (1.4 equiv) 20°C:01M 7

entry Ar time/h yield/%® ee/%"

1 Ph 4 94 97
2 2-naphthyl 13 quant 97
3 p-tolyl 13 91 96
4 p-MeOC6H4 9 96 94
5 0-FCgH, 4 96 99
6 m-FCgH, 5 77 97
7 p-FCgH, 15 81 93
8¢ p-NO,CgH,4 3 99 92
9 2-thienyl 15 95 90

“Isolated yield. ? Determined by HPLC analysis on a chiral station-
ary phase using Daicel Chiralcel OJ-H column and Daicel Chiralpak
AS-H, AD-H column. ¢ Imine was generated in situ. ¢ At 30 °C.

Scheme 4. Deprotection of p-Methoxyphenyl Group on Nitro-
gen Atom
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LiAIH4 reduction followed by exposure to triphosgene
(Scheme 6).

In summary, we developed a novel method for the
transfer deuteration of ketimines with excellent enantio-
selectivities by use of benzothiazoline as the deuterium
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Scheme 5. Preparation of 4-Bromobenzoate 9
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Scheme 6. Transformation to Oxazolidinone Bearing Deuter-
ium Atom
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donor in combination with chiral phosphoric acid. The
large kinetic isotope effect (ky/kp = 3.8) indicates that
cleavage of the carbon—deuterium bond is the rate-
determining step.
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